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We consider the switching rate of a metastable reaction scheme, which includes reactions with arbitrary
steps, e.g., kA↔ �k+r�A �both forward and reverse reaction steps are allowed to happen�. Employing a WKB
approximation, controlled by a large system size, we evaluate both the exponent and the preexponential factor
for the rate. The results are illustrated on a number of examples.
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Since the celebrated work of Kramers �1� on reaction-rate
theory, much effort has been devoted to extending and gen-
eralizing his results, see Ref. �2� for a review. Applications of
this theory can be found in fields as diverse as high-energy
physics, nucleation, chemical kinetics, electric transport, dif-
fusion in solids, and population dynamics among many oth-
ers. In this work we consider the switching rate in a generic
reaction scheme, which admits more than one �quasi�station-
ary state.

The particular case of single-step reactions allows for an
exact solution and is well studied in the literature �3,4�. We
thus concentrate on generic multistep reactions. Although an
exact solution is not known, a substantial progress may be
achieved by adopting an analog of the quantum-mechanical
WKB approximation �5–7�, controlled by a large system
size. With an exponential accuracy it gives the switching rate
as an exponentiated action of an auxiliary mechanical prob-
lem. Evaluation of the preexponential factor requires a
matching of the quasistationary distribution �QSD� function,
found in the WKB framework, with the constant current “be-
hind the barrier” solution �1,8�. The first consistent applica-
tion of this strategy to a model reaction scheme was pre-
sented recently by Meerson and Sasorov �9�. Here we
generalize their approach to an arbitrary scheme with meta-
stable states. Let us note that the approximation of the master
equation by a Fokker-Planck equation by means of a
Kramers-Moyal or van Kampen system size expansion is not
applicable in this case. These expansions assume that the
stochasticity reduces to small Gaussian fluctuations around
the mean-field state, a category to which large fluctuations do
not belong �4–9�.

Consider a generic multistep reaction scheme, where a
state with n particles may be transformed into a state with
n+r particles with the rate Wr�n�. Here r is a set of integers
not necessarily equal �1. The corresponding master equa-
tion for the probability distribution Pn�t� is

�tPn�t� = �
r

�Wr�n − r�Pn−r�t� − Wr�n�Pn�t��

= �
r

�e−r�n − 1�Wr�n�Pn�t� . �1�

We focus on reactions which admit a QSD centered at n
=n0 and an unstable equilibrium �saddle point� at n=ns. For

definiteness we assume that n0�ns. We also assume that
both n0 and ns scale in the same way with a large parameter
N�1, hereafter referred to as the system size, i.e., n0,s�N. It
is then convenient to pass to a scaling variable q=n /N and
separate the leading and the first subleading orders in N in
the corresponding reaction rates,

Wr�n� = Nwr�q� + ur�q� + O�1/N�, q = n/N . �2�

We seek for a QSD in the form Pn�t�=��n�e−E0t, where
E0=1 /� is an exponentially small eigenvalue of the master
equation. In the rescaled coordinate the corresponding eigen-
vector may be sought in the WKB form

��q� = exp�− NS�q� − S1�q�� . �3�

Substituting this form in the master Eq. �1� and keeping
terms up to the order of O�1�, one finds

0 = �
r

�Nwr + ur�	erS�
1 −
r2

2N
S� +

r

N
S1� −

r

N

wr�

wr
� − 1� ,

�4�

where the primes denote derivatives with respect to the res-
caled reaction coordinate q. We have also taken into account
that the eigenvalue E0 is expected to be exponentially small
in N �see below� and thus may be omitted.

At order N this equation acquires the form of the station-
ary Hamilton-Jacobi equation H�q ,S��=0, where the effec-
tive classical Hamiltonian takes the form �6,8�

H�q,p� = �
r

wr�q��erp − 1� , �5�

and we have denoted S�= p. Therefore to the order N the
problem is reduced to finding zero-energy trajectories p
= p�q�, such that H(q , p�q�)=0, of a corresponding “me-
chanical” problem.

The phase portrait of a typical bistable reaction is plotted
in Fig. 1. There are at least two appropriate zero-energy tra-
jectories: the relaxation trajectory p=0 and the activation
trajectory p= pa�q�, see Fig. 1. The classical equation of mo-
tion along the relaxation path q̇=Hp�q ,0�=�rrwr�q� is noth-
ing but the mean-field rate equation for our reaction scheme.
According to our assumptions it admits stationary states
q0,s=n0,s /N, where Hp�q0,s ,0�=0 �other stationary states are
possible, e.g., q0�, see Fig. 1�. Those are the points where the
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activation trajectory pa�q� crosses the relaxation one p=0
and thus pa�q0,s�=0.

To escape from a metastable state centered around q0 the
system must evolve along the activation trajectory, Fig. 1.
The QSD is given by Eq. �3�, where S�q� and S1�q� are
determined by the order N and order 1 terms in Eq. �4� cor-
respondingly. They lead to

S�q� = q

dqpa�q� , �6�

S1�q� = q

dq
pa�Hpp + 2Hpq − 2�r

ur�erpa − 1�

2Hp
, �7�

where the derivatives of the Hamiltonian are evaluated along
the activation path, e.g., Hpq=�rrerpa�q�wr��q�, etc., and pa�
=S�. Equations �3�, �6�, and �7� determine the QSD up to a
multiplicative constant. To find the latter, one needs to match
the QSD with the constant current solution on the other side
of the saddle point qs �1,8,9�.

At q�qs the system evolves along the relaxation trajec-
tory p=0, Fig. 1, and therefore S�0. Solving Eq. �4� for S1,
one finds

��q� = J/Hp�q,0� , �8�

where J is an integration constant given by the current out of
the QSD. Indeed, the master Eq. �1�, having the structure of
the continuity relation, in a vicinity of the relaxation trajec-
tory p=0 acquires the form

�tP�q,t� = − �q�Hp�q,0�P�q,t� + O�1/N�� . �9�

Therefore the relaxation limit �8� of QSD P�q , t�=��q�e−E0t

is nothing but a constant current, J, solution of the master
equation �where we have again neglected the exponentially
small eigenvalue E0 on the left-hand side�. On the other
hand, integrating the continuity relation �9� throughout the
region of support of the QSD and assuming that the escape
takes place only through the saddle point qs �10�, one finds

E0 ��q�dq = J . �10�

Finally to establish relation between the activation solu-
tion, Eqs. �3�, �6�, and �7�, at q�qs and the relaxation one,
Eq. �8�, at q�qs, one needs to consider the master equation
in an immediate vicinity of the saddle qs �9�. Expanding the
right-hand side of Eq. �1� to the second derivative, one finds
for the current

�Hpq�qs,0���q − qs���q� −
Hpp�qs,0�

2N
�q��q� = J , �11�

where we have used the fact that at the saddle
point Hp�qs ,0�=�rrwr�qs�=0. Solution of Eq. �11� with
the proper asymptotic behavior has the following

form ��q�= �2NJ /Hpp�e�q − qs�
2/ls

2
�q−qs

� dqe−�q − qs�
2/ls

2
, where ls

2

=Hpp�qs ,0� /NHpq�qs ,0�. Indeed, away from the saddle point
qs it possesses the following asymptotics:

��q� = �
J

�q − qs�Hpq
q − qs � ls

2NJls
��

Hpp
e�q − qs�

2/ls
2

qs − q � ls.� �12�

The first line matches with the relaxation solution �8� at q
�qs, as it should. The second line is to be matched with the
activation solution Eqs. �3�, �6�, and �7�, which in the vicin-
ity of q=qs takes the form

��q� = e−NS�qs�−S1�qs�e−N�q − qs�
2S��qs�/2. �13�

To relate the q-dependent exponential factors here and in the
second line of Eq. �12�, one may differentiate the identity
H(q , pa�q�)=0 over q to find

Hq + Hppa� = 0, Hqq + Hppa� + �Hpppa� + 2Hpq�pa� = 0.

�14�

Employing that pa�=S� and H�q ,0�=Hp�q0,s ,0�=0, one finds

S��q0,s� = −
2Hpq�q0,s,0�
Hpp�q0,s,0�

= −
2�r

rwr��q0,s�

�r
r2wr�q0,s�

, �15�

and therefore S��qs�=−2 /Nls
2. This establishes the equality of

the exponential factors in Eqs. �12� and �13�. Comparing the
preexponential coefficients one finds for the escape current

J =
Hpp�qs,0�

2
��S��qs��

2�N
e−NS�qs�−S1�qs�. �16�

One can employ now the normalization condition �10� to
find the escape rate E0=1 /�. To this end we notice that the
bulk of the QSD is centered around q0 and approximates the
integral by a Gaussian one. As a result one finds for the
escape time

q

p

p=0
p

a
=p

a
(q)

q
0

q
s q

0
’

l
s

FIG. 1. �Color online� Phase portrait of a typical bistable reac-
tion. The dashed line is the relaxation trajectory p=0; the solid line
is the activation trajectory pa= pa�q�. These zero-energy curves in-
tersect at the metastable points q0, q0�, and the saddle point qs. The
arrows show the direction of motion according to Hamilton equa-
tions. The matching of activation and relaxation solutions takes
place in a narrow region of width ls�N−1/2 around the saddle point.
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� =
4�

Hpp�qs,0�
eS1�qs�−S1�q0�

��S��qs��S��q0�
eN�S�qs�−S�q0��, �17�

where S�qs�−S�q0� and S1�qs�−S1�q0� are fully determined
by Eqs. �6� and �7�. It is important to mention that the cor-
responding integrals are free of singularities and can be
straightforwardly evaluated for any given reaction scheme.
Equation �17� is the main result of the present paper.

For analytically tractable examples it is useful to notice
that with the help of identities in Eq. �14�, one may partially
integrate Eq. �7� to obtain

S1�qs� − S1�q0� = ln� S��q0�
�S��qs��

+ 	 ,

	 = 
q0

qs

dq
 Hqq

2Hq
−

�r
ur�erpa − 1�

Hp

� . �18�

Employing Eq. �15�, one may somewhat simplify Eq. �17� to
cast it in the following form:

� =
2�e	

Hpq�qs,0�
eN�S�qs�−S�q0��. �19�

Below we illustrate the usefulness of Eqs. �17� and �19� on a
few examples.

r1−r2 reactions. Consider a reaction scheme where the
step variable r may acquire only two values r1 and r2. The
corresponding reaction rates are Wr1,2

�n�=Nwr1,2
�q�, where

we have omitted possible subleading terms ur1,2
for brevity.

The Hamiltonian takes the form

H�q,p� = wr1
�q��er1p − 1� + wr2

�q��er2p − 1� , �20�

and the activation trajectory is given by the solution of the
following algebraic equation for epa:

er1pa�q� − 1

er2pa�q� − 1
= −

wr2
�q�

wr1
�q�

. �21�

As a result, the following identity holds along the activation
trajectory:

Hqq

Hq
=

wr1
� �q��er1pa − 1� + wr2

� �q��er2pa − 1�

wr1
� �q��er1pa − 1� + wr2

� �q��er2pa − 1�

=
wr1

wr2
� − wr1

� wr2

wr1
wr2

� − wr1
� wr2

=
d

dq
ln�wr1

wr2
� − wr1

� wr2
� .

The fixed points satisfy r1wr1
�q0,s�=−r2wr2

�q0,s�, while
Hpq�q0,s ,0�=r1wr1

� �q0,s�+r2wr2
� �q0,s�. Employing Eqs. �18�

and �19�, one finds for the switching time

� = 2��� wr
1
�qs�

wr
1
�q0�� eN�S�qs�−S�q0��

��Hpq�qs,0�Hpq�q0,0��
, �22�

where wr1
�qs� /wr1

�q0�=wr2
�qs� /wr2

�q0� and the action is
given by Eq. �6�.

In the particular case of single-step reactions, r1,2= �1,
Eq. �21� may be solved explicitly, epa�q�=w−�q� /w+�q�. The
fixed points are given by w+�q0,s�=w−�q0,s� and according to
Eq. �15� Hpq�q0,s ,0�=−S��q0,s�w+�q0,s�. Employing Eq. �22�,
the switching rate of the single-step reaction schemes may be
written as

� =
2�

w��q0�

exp
− 
q0

qs

dq� u+

w+
−

u−

w−
��

��S��qs��S��q0�
eN�S�qs�−S�q0��, �23�

where

S�qs� − S�q0� = 
q0

qs

dq ln�w−�q�/w+�q�� , �24�

and we have included subleading terms in the rates u��q�,
according to Eq. �18� �11�. In the particular case of reaction
rates having only leading terms �u�=0�, Eq. �23� coincides
with the results of Doering et al. �4�, who showed it to be the
large N asymptotics of the exact result for the single-step
reactions �3�. In general, the ur terms can substantially
modify the prefactor �9� �see below�.

Demographic explosion. Consider a single-step model
�7,9� A�� with the relative rates 1 and N�1−
2� /2, where
0�
�1, and 2A→3A with the relative rate 1 /N. The cor-
responding transition rates are

W−�n� = n, W+�n� =
N�1 − 
2�

2
+

n�n − 1�
2N

.

The rescaled rates are w−=q and w+= �1−
2+q2� /2 while
u−=0 and u+=−q /2 and the two rescaled fixed points are
q0,s=1�
. Employing Eq. �23�, one finds for the escape
time from the metastable state centered at n=N�1−
� toward
n→�

� =
2�




1 + 


1 − 

eN�S�1+
�−S�1−
��, �25�

in perfect agreement with the recent result of Meerson and
Sasorov �9�. This example is specially interesting because
it shows the importance of the subleading terms ur. Disre-
garding these terms, one obtains a prefactor proportional to
�1−
�−1/2 instead of the correct one �1−
�−1. This constitutes
an arbitrarily large error in the limit 
→1, where the action
S�2�−S�0� remains bounded.

Fokker-Planck Hamiltonian. Consider a dissipative par-
ticle under the influence of a multiplicative Gaussian noise
�understood in the sense of Itô �3��. The corresponding

Fokker-Planck equation is Ṗ= ĤP, where

Ĥ�q, p̂� = p̂2D�q� − p̂V��q� , �26�

here D�q��0 is a coordinate-dependent diffusion coefficient
and p̂=−�q. Since this is a normally ordered operator, cf. Eq.
�1�, one may employ the theory developed above. Following
the WKB approximation one substitutes p̂→p and employs
Eq. �19�. The stationary points are defined by the condition
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V��q0,s�=0 and the activation trajectory is given by pa�q�
=V��q� /D�q�. As a result S�qs�−S�q0�=�q0

qsdqV��q� /D�q� and
Hpq�qs ,0�=−V��qs��0. There are no subleading terms here,
ur=0, and therefore

	 = 
q0

qs

dq
Hqq

2Hq
=

1

2
ln� V��qs�D�qs�

V��q0�D�q0�
� ,

where we have made use of V��q0�=V��qs�=0. Using this
equality again one finds S��q0,s�=V��q0,s� /D�q0,s�, and fi-
nally, plugging all together in Eq. �19�, one obtains

� =
2�

�V��q0��V��qs��
�D�qs�

D�q0�
exp


q0

qs

dqV��q�/D�q�� ,

�27�

in agreement with previous calculations �2�. Assuming a con-
stant diffusion coefficient D�q�=T �i.e., additive noise�, one
recovers Kramers result �1�. Notice that the role of N is
played by 1 /T.

Higher moments of noise. Consider now Kramers prob-
lem of a dissipative particle subject to a white non-Gaussian
noise. The corresponding Hamiltonian reads

H�q,p� = �kp
k + Tp2 − pV��q� . �28�

Here k=3,4 , . . . and 3,4,. . . is the third, fourth, etc. �i.e., first
nonvanishing beyond the second� irreducible moment of the
noise correlation function. This type of noise appears as, e.g.,
higher-order corrections in the Kramers-Moyal expansion of
the master equation �3�. Assuming that the higher moments
are much smaller than the second one �12� and proceeding as
in the last case, we find

� =
2�

��V��qs��V��q0�
e�V�qs�−V�q0��/T

� exp�−
k

Tk
q0

qs

�V��q��k−1dq + O�k
2�� . �29�

As can be seen, the prefactor remains unchanged and the
whole contribution coming from the higher-order noise con-
centrates in an extra “phase.” Note that k is necessarily posi-
tive for even k �in order to keep the noise real� but it can be
either positive or negative for odd k. For the escape pro-
cesses under consideration V�qs��V�q0�, and so the integral
term in the extra phase is positive, which implies that even
moments of noises only contribute to reduce the escape time,
while the odd ones can reduce or increase the switching time,
depending on the sign of the corresponding moment.

To conclude, we have calculated the escape rate from a
metastable state whose dynamics is described by a general
multistep master equation. We found a relatively simple ana-
lytical result for the switching rates between metastable
states �but not for absorbing phase transitions, as, e.g., ex-
tinction� of an arbitrary single-species reaction scheme. We
have shown that the general formula found here reduces to
known results for single-step reactions and Fokker-Planck
equations, with either additive or multiplicative noises. This
technique can be used to improve the accuracy with which
phenomena as chemical stochastic resonance has been stud-
ied �8�. A further clarification of the physics of these systems
could be possibly achieved this way.
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